
9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 1/6

Programming Assignment 2

Expression Evaluation

Posted Fri, Sep 30

Due Fri, Oct 21, 11:00 PM (WARNING!! NO GRACE PERIOD).

Extended deadline (with ONE time free extension pass): Mon, Oct 24, 11:00 PM (NO
GRACE PERIOD)

Worth 65 points (6.5% of course grade)

In this assignment you will implement a program to evaluate an arithmetic expression USING RECURSION
AND STACKS.

Read the Course Policies page, Programming Assignments section for important information about
lateness, program not compiling, etc.

You will work individually on this assignment. Read the DCS Academic Integrity Policy for Programming
Assignments ‐ you are responsible for this. In particular, note that "All Violations of the Academic
Integrity Policy will be reported by the instructor to the appropriate Dean".

You get ONE extension pass for the semester, no questions asked. There will be a total of 5 assignments
this semester, and you may use this one time pass for any assignment. A separate Sakai assignment will
be opened for extensions AFTER the deadline for the regular submission has passed.

IMPORTANT ‐ READ THE FOLLOWING CAREFULLY!!!

Assignments emailed to the instructor or TAs will be ignored‐‐they will NOT be accepted for
grading. We will only grade submissions in Sakai.
If your program does not compile, you will not get any credit.

Most compilation errors occur for two reasons:

1. You are programming outside Eclipse, and you delete the "package" statement at the top of the
file. If you do this, you are changing the program structure, and it will not compile when we test
it.

2. You make some last minute changes, and submit without compiling.

To avoid these issues, (a) START EARLY, and give yourself plenty of time to work through the
assignment, and (b) Submit a version well before the deadline so there is at least something in Sakai
for us to grade. And you can keep submitting later versions (up to 10) ‐ we will accept the LATEST
version.

Expressions
Implementation and Grading
Running the evaluator
Submission
FAQ ‐ IMPORTANT!!! READ BEFORE ASKING QUESTIONS!!

Expressions

Here are some sample expressions of the kind your program will evaluate:

http://www.cs.rutgers.edu/courses/112/classes/spring_2011_venugopal/policies.html
http://www.cs.rutgers.edu/policies/academicintegrity/index.php?page=3

9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 2/6

 3
 Xyz
 3-4*5
 a-(b+A[B[2]])*d+3
 A[2*(a+b)]
 (varx + vary*varz[(vara+varb[(a+b)*33])])/55

The expressions will be restricted to the following components:

Integer constants
Scalar (simple, non‐array) variables with integer values
Arrays of integers, indexed with a constant or a subexpression
Addition, subtraction, multiplication, and division operators
Parenthesized subexpressions

Note the following:

Subexpressions (including indexes into arrays between '[' and ']') may be nested to any level
Multiplication and division have higher precedence than addition and subtraction
Variable names (either scalars or arrays) will be made up of one or more letters only (case
sensitive, so Xyz is different from xyz)
Integer constants may have multiple digits
There may any number of spaces or tabs between any pair of tokens in the expression. Tokens are
variable names, constants, parentheses, square brackets, and operators.

Implementation and Grading

Download the attached expression_project.zip file to your computer. DO NOT unzip it. Instead, follow the
instructions on the Eclipse page under the section "Importing a Zipped Project into Eclipse" to get the
entire project into your Eclipse workspace.

You will see a project called Expression Evaluation with the following classes in package apps:

ScalarSymbol
This class represents a simple variable with a single value. Your implementation will create a
ScalarSymbol object for every simple variable in the expression. You don't have to implement
anything in this class, so do not make any changes to it.

ArraySymbol
This class represents an array of integer values. Your implementation will create an ArraySymbol
object for every array variable in the expression. You don't have to implement anything in this
class, so do not make any changes to it.

Expression
This class represents the expression as a whole, and consists all the following steps of the
evaluation process:

1. 15 pts: buildSymbols ‐ This method populates the two instance fields, scalars and arrays,
with all simple (scalar) variables, and all array variables, respectively, that appear in the
expression.
You will fill in the implementation of this method. Make sure to read the comments above
the method header to get more details.

2. loadSymbolValues ‐ This method reads values for all scalars and arrays from a file, into the
ScalarSymbol and ArraySymbol objects stored in the scalars and arrays array lists. This
method is already implemented, do not make any changes.

9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 3/6

3. 50 pts: evaluate ‐ This method evaluates the expression.
You will fill in the implementation of this method. You MUST use RECURSION to evaluate
parenthesized subexpressions and array index expressions. You can write a separate private
recursive method and call it from this public method.

Two other methods, printScalars and printArrays are implemented for your convenience, and may
be used to debug the loadSymbolValues method.

Evaluator, the application driver, which calls methods in Expression

You are also given the following class in package structures:

Stack, to be used in the evaluation process

Lastly, two test files are included, etest1.txt and etest2.txt, appearing directly under the project folder.

Do not add any other classes. In particular, don't use your own stack class, make sure you use the one
you are given.

You will need to separate out ("tokenize") the components of the expression in buildSymbols and
evaluate. Tokens include operands, operators, parentheses and square brackets. It may be helpful (but
you are not required) to use java.util.StringTokenizer to tokenize the expression. See the
loadSymbolValues method in Expression for an example of using StringTokenizer to extract variable
names. The delims field in the Expression class may be used in the tokenizing process.

Observe the following rules while working on Expression.java:

You may NOT add any impoä statements to the file.
Note that the java.io.* and java.util.* import statements at the top of the file allow for importing
ANY class in java.io or java.util packages without additional specification.
You may NOT add any fields to the Expression class.
You may NOT modify the headers of any of the given methods.
You may NOT delete any methods.
You MAY add helper methods if needed, as long as you make them private.

Rules and guidelines for Implementing evaluate

An expression may contain sub‐expressions within parentheses ‐ you MUST use RECURSION to
evaluate sub‐expressions.
Recursion MUST also be used to evaluate array subscripts as well, since a subscript is an
expression.
A stack may be used to store the values of operands as well as the results from evaluating
subexpressions ‐ see next point.
Since * and / have precedence over + and -, it would help to store operators in another stack.
(Think of how you would evaluate a+b*c.)
When you implement the evaluate method, you may want to test as you go, implementing code for
and testing simple expressions, then building up to more complex expressions. The following is an
example sequence of the kinds of expressions you may want to build with:

3
a
3+4
a+b
3+4*5
a+b*c
Then introduce parentheses
Then try nested parentheses
Then introduce array subscripts, but no parentheses

9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 4/6

Then try nested subscripts, but no parentheses
Then try using parentheses as well as array subscripts
Then try mixing arrays within parentheses, parentheses within array subscripts, etc.

We will grade your program by running it through several test cases.

You may assume that all input symbol values files will be correctly formatted, and every file will be
guaranteed to have values for all symbols in the expression that is being evaluated. You don't have to
check the validity of the symbol values files in your code.

NOTE:

When we test your evaluate method, we will use OUR implementation of the buildSymbols method. This
is for your benefit, so that in the event that your buildSymbols does not work correctly, your evaluate
method will not be adversely affected.

Running the evaluator

No variables

 Enter the expression, or hit return to quit => 3
 Enter symbol values Ûle name, or hit return if no symbols =>
 Value of expression = 3.0

 Enter the expression, or hit return to quit => 3-4*5
 Enter symbol values Ûle name, or hit return if no symbols =>
 Value of expression = -17.0

 Enter the expression, or hit return to quit =>

Neither of the expressions above have variables, so just hit return to skip the symbol loading part.

Variables, values loaded from file

 Enter the expression, or hit return to quit => a
 Enter symbol values Ûle name, or hit return if no symbols => etest1.txt
 Value of expression = 3.0

 Enter the expression, or hit return to quit =>

Since the expression has a variable, a, the evaluator needs to be supplied with a file that has a value for
it. Here's what etest1.txt looks like:

 a 3
 b 2
 A 5 (2,3) (4,5)
 B 3 (2,1)
 d 56

Each line of the file begins with a variable name. For scalar variables, the name is followed by the
variable's integer value. For array variables, the name is followed by the array's length, which is followed
by a series of (index, integer value) pairs. If the value at a particular array index is not explicitly listed,
it is set to 0 by default.

So, A = [0,0,3,0,5] and B = [0,0,1]

9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 5/6

Note that the symbol values file can have values for any number of symbols, so that it can be used as
input for several expressions that contain one or more of the symbols in the file.

Here are a couple more evaluations of expressions for which the symbol values are loaded from
etest1.txt:

 Enter the expression, or hit return to quit => (a + A[a*2-b])
 Enter symbol values Ûle name, or hit return if no symbols => etest1.txt
 Value of expression = 8.0

 Enter the expression, or hit return to quit => a - (b+A[B[2]])*d + 3
 Enter symbol values Ûle name, or hit return if no symbols => etest1.txt
 Value of expression = -106.0

 Enter the expression, or hit return to quit =>

For a change of pace, here's etest2.txt, which has the following symbols and values:

 varx 6
 vary 5
 arrayA 10 (3,5) (8,12) (9,1)

And here are evaluations using this file:

 Enter the expression, or hit return to quit => arrayA[arrayA[9]*(arrayA[3]+2)+1]-varx
 Enter symbol values Ûle name, or hit return if no symbols => etest2.txt
 Value of expression = 6.0

 Enter the expression, or hit return to quit =>

Submission

Submit your Expression.java file ONLY.

Frequently Asked Questions

Q: Are array names all uppercase?

A: No. Arrays could have lower case letters in their names. You can tell if a variable is an array if it is
followed by an opening square bracket. See, for example, the last example in the "Expression" section:

(varx + vary*varz[(vara+varb[(a+b)*33])])/55

Q: Can we delete spaces from the expression?

A: Sure.

Q: What if an array index evaluates to a non‐integer such as 5/2?

A: Truncate it and use the resulting integer as the index.

Q: Should the expression "()" be reported as an error?

A: You don't have to do any error checking on the legality of the expression in the buildSymbols or evalute
methods. When these methods are called, you may assume that the expression is correctly constructed.

9/30/2016 CS112 Fall 2016: Expression Evaluation

http://www.cs.rutgers.edu/courses/112/classes/fall_2016_venugopal/progs/prog2/prog2.html 6/6

Which means you will not encounter an expression without at least one constant or variable, and all
parens and brackets will be correctly formatted. Which means you won't need to deal with "()".

Q: Can I convert the expression to postfix, then evaluate the postfix expression?

A: NO!!! You have to work with the given traditional/infix form of the expression.

